Kamis, 27 November 2014

Regresi Linier Sederhana

               

    Hubungan Antarvariabel

Hubungan antarvariabel dapat berupa hubungan linier ataupun hubungan tidak linier. Misalnya, berat badan laki-laki  dewasa sampai pada taraf tertentu bergantung pada tinggi badan, keliling lingkaran bergantung pada diameternya, dan tekanan gas bergantung pada suhu dan volumenya. Hubungan-hubungan itu bila dinyatakan dalam bentuk matematis akan memberikan persamaan-persamaaan tertentu.
Untuk dua variable, hubungan liniernya dapat dinyatakan dalam bentuk persamaan linier, yaitu:
        
Keterangan :
Y, X = variabel
a, b  = bilangan konstan (konstanta)
Hubungan antara dua variabel pada persamaan linier jika digambarkan secara grafis (scatter diagram), semua nilai Y dan X akan berada pada suatu garis lurus. Dalam ilmu ekonomi, garis itu disebut garis regresi.
Karena antara Y dan X memiliki hubungan, maka nilai  X dapat digunakan untuk menduga atau meramal nilai Y. Dalam hal ini, X disebut variabel bebas, yaitu variabel yang nilai-nilainya bergantung pada variabel lain.
    Hubungan antarvariabel yang akan dipelajari disini hanyalah hubungan linier sederhana, yaitu hubungan yang hanya melibatkan dua variabel (X dan Y) dan berpangkat satu.

    Persamaan Garis Regresi Linier Sederhana

Regresi yang berarti peramalan, penaksiran, atau pendugaan pertama kali diperkenalkan pada tahun 1877 oleh Sir Francis Galton (1822-1911) sehubungan dengan penelitiannya terhadap tinggi manusia. Penelitian tersebut membandingkan antara tinggi anak laki-laki dan tinggi badan ayahnya.
Analisis regresi juga digunakan untuk menentukan bentuk hubungan antar variabel. Tujuan utama dalam penggunaan analisis itu adalah untuk meramalkan atau memperkirakan nilai dari satu variabel dalam hubungannya dengan variabel yang lain yang diketahui melalui persamaan garis regresinya.
Untuk populasi, persamaan garis regresi linier sederhananya dapat dinyatakan dalam bentuk:
Keterangan:
 rata-rata Y bagi X tertentu.
 konstanta atau parameter atau koefisien regresi populasi
Karena populasi jarang diamati secara langsung, maka digunakan persamaan regresi linier sederhana sampel sebagai penduga persamaan regresi linier sederhana populasi. Bentuk persamaannya adalah
Keterangan:
         = penduga bagi variabel terikat (variabel yang diduga)
         = variabel bebas (variabel yang diketahui)
         = penduga parameter A dan B = koefisien regresi sampel
         = intersep (nilai Y, bila X = 0)
         = slop (kemiringan garis regresi)
Persamaan  memberikan arti jika variabel X mengeluarkan satu satuan maka variabel Y akan mengalami peningkatan atau penurunan sebesar 1  b.
Untuk membuat peramalan, penaksiran, atau pendugaan dengan persamaan regresi, maka nilai  dan b harus ditentukan terlebih dahulu.

                

Tidak ada komentar:

Posting Komentar